ON THE REDUCTION OF THE EQUATIONS OF MOTION OF A GYROIIORIZONCOMPASS AND TWO-GYROSCOPE VERTICAL

(O PRIVODIMOSTI URAVNENII DVIZHENIIA GIROGORIZONTKOMPASA I DVURHGIROSEOPICHESKOI VERTICALI)

PMM Vol.26, No.2, 1962, pp. 369-372

> V.F. LIASHENKO
> (MOscow)
> (Received Novenber 22, 1961)

Some results of [1] are generalized. The use of simplified equations of Geckeler for arbitrary motion of a gyrohorizoncompass suspension point on the earth sphere is justified with the aid of a theorem by Erugin [2]. An analogous question applicable to a two-gyroscope vertical is also considered [3].

1. In the absence of damping the equations of perturbed motion of a gyrohorizoncompass are [4]

$$
\begin{gathered}
m l v \frac{d \alpha}{d t}+m l \frac{d v}{d t} \alpha-m g l \beta-\Omega 2 B \sin \varepsilon^{\circ} \delta=0 \quad \frac{d \beta}{d t}+\frac{v}{R} \alpha-\Omega \gamma=0 \\
\frac{d \gamma}{d t}+\frac{2 B \sin \varepsilon^{\circ}}{m l R} \delta+\Omega \beta=0, \frac{d}{d t}\left(2 B \sin \varepsilon^{\circ} \delta\right)-m g l \gamma+m l v \Omega \alpha=0 \\
=\sqrt{\left(R O \cos \varphi+v_{E}\right)^{2}+v_{N}{ }^{2}}, \Omega=u \sin \varphi+\frac{v_{E}}{R} \tan \varphi-\dot{\alpha}, \quad \alpha^{*}=-\frac{v_{N}}{R u \cos \varphi+v_{E}}
\end{gathered}
$$

Here B is the kinetic moment of the gyroscope rotor; ε° is some equilibriun position for the separation angle of the gyroscopes; α is the deviation angle for the gyrosphere axis in azimuth; β is the lift angle for the north end of the gyrosphere axis above the surface tangent to the earth sphere at the point of gyrosphere suspension; γ is the gyrosphere rotation angle about the line north-south; δ is the gyroscopes' rotation angle about their frames, defining the perturbed location of gyro rotor axes relative to the gyrosphere; $m=P / g$ is the mass of the gyrosphere (P is the weight of the gyrosphere, g the acceleration of gravity); l is the metacentric height of the gyrosphere; R is the earth radius; U is the earth angular velocity; φ is ship's location latitude (geocentric); v_{E}, v_{N} are east and north velocity components, respectively,
of the gyrosphere suspension point relative to earth surface.
Let the ship perform maneuvers on a given latitude φ.
We will introduce new variables $x_{j}(j=1,2,3,4)$ by formulas

$$
\begin{equation*}
\alpha=\frac{R U \cos \varphi}{v} x_{1}, \quad \beta=x_{2}, \quad \gamma=x_{3}, \quad \delta=\frac{\sin \varphi}{\sin \varepsilon^{\circ}} x_{4} \tag{1.2}
\end{equation*}
$$

The system (1.1) for new variables becomes [1]

$$
\begin{gather*}
\frac{d x_{1}}{d t}-\frac{v^{2}}{U \cos \varphi} x_{2}-\lambda_{1} \tan \varphi \Omega x_{4}=0, \quad \frac{d x_{2}}{d t}+U \cos \varphi x_{1}-\Omega x_{3}=0 \\
\frac{d x_{3}}{d t}+\frac{2 B \sin \varphi v^{2}}{P l} x_{4}+\Omega x_{2}=0, \quad \frac{d x_{4}}{d t}-\frac{P l}{2 B \sin \varphi} x_{3}+\frac{1}{\lambda_{1}} \cot \varphi \Omega x_{1}=0 \tag{1.3}\\
\left(v=\sqrt{\frac{g}{R}}, \lambda_{1}=\frac{2 B v^{2}}{P l U}\right)
\end{gather*}
$$

Koshliakov [1] suggested the substitution

$$
\xi_{1}=x_{1} \cos \theta-\frac{v}{U \cos \varphi} x_{2} \cos \theta+\frac{v}{U \cos \varphi} x_{3} \sin \theta-\lambda_{1} \tan \varphi x_{4} \sin \theta
$$

$\xi_{2}=\frac{U \cos \varphi}{v} x_{1} \cos \theta+x_{2} \cos \theta-x_{3} \sin \theta-\frac{\nu 2 B \sin \varphi}{P l} x_{4} \sin \theta$
$\left(\theta(t)=\int_{0}^{t} \Omega(\tau) d \tau\right)$
$\xi_{3}=\frac{U \cos \varphi}{v} x_{1} \sin \theta+x_{2} \sin \theta+x_{3} \cos \theta+\frac{\nu 2 B \sin \varphi}{P l} x_{4} \cos \theta$
$\xi_{4}=\frac{1}{\lambda_{1}} \cot \varphi x_{1} \sin \theta-\frac{P l}{v 2 B \sin \varphi} x_{2} \sin \theta-\frac{P l}{v 2 B \sin \varphi} x_{3} \cos \theta+x_{4} \cos \theta$

This substitution reduces the system (1.3) to the Schuler-Geckeler system

$$
\begin{array}{ll}
\frac{d \xi_{1}}{d t}-\frac{\nu^{2}}{U \cos \varphi} \xi_{2}=0, & \frac{d \xi_{3}}{d t}+\frac{2 B \sin \varphi v^{2}}{P l} \xi_{4}=0 \tag{1.5}\\
\frac{d \xi_{2}}{d t}+U \cos \varphi \xi_{1}=0, & \frac{d \xi_{4}}{d t}-\frac{P l}{2 \bar{B} \sin \varphi} \xi_{3}=0 .
\end{array}
$$

2. Substitution (1.4) is applicable for any form of the function $\Omega(t)$. Nevertheless, [1] presents its substantiation only for a special case when $\Omega(t)$ is a periodic function of time. Equations (1.5), however, can be justified for any form of the function $\Omega(t)$ by means of a theoren due to Erugin [2].

The system (1.3) is solved in a similar way to that suggested in [4]. Let us represent the system (1.3) in the form

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{U \cos \varphi}{v} x_{1}\right)-v x_{2}-\frac{2 B \sin \varphi v}{P l} \Omega x_{4}=0, \quad \frac{d x_{2}}{d t}+U \cos \varphi x_{1}-\Omega x_{2}=0 \tag{2.1}
\end{equation*}
$$

$$
\frac{d x_{3}}{d t}+\frac{2 B \sin \varphi v^{2}}{P l} x_{4}+\Omega x_{2}=0, \frac{d}{d t}\left(\frac{2 B \sin \varphi v}{P l} x_{4}\right)-v x_{3}+\frac{U \cos \varphi}{v} \Omega x_{1}=0
$$

Introducing two complex-valued functions of t by

$$
\begin{equation*}
x(t)=\frac{U \cos \varphi}{v} x_{1}+i x_{2}, \quad \mu(t)=x_{3}-i \frac{2 B \sin \varphi v}{P l} x_{4}(i=\sqrt{-1}) \tag{2.2}
\end{equation*}
$$

The system (2.1) is reduced to two equations of the form

$$
\begin{equation*}
\frac{d \chi}{d t}+i v \chi=i \Omega \mu, \quad \frac{d \mu}{d t}+i v \mu=i \Omega \chi \tag{2.3}
\end{equation*}
$$

which yield the following equations

$$
\begin{equation*}
\frac{d}{d t}(\chi+\mu)+i(v-\Omega)(\chi+\mu)=0, \quad \frac{d}{d t}(\chi-\mu)+i(\nu+\Omega)(\chi-\mu)=0 \tag{2.4}
\end{equation*}
$$

These are easily integrated. We have

$$
\begin{equation*}
\chi+\mu=C_{1} \exp \left(-i \int_{0}^{t}(v-\Omega) d t\right), \quad \chi-\mu=C_{2} \exp \left(-i \int_{0}^{t}(v+\Omega) d t\right) \tag{2.5}
\end{equation*}
$$

Here C_{1}, C_{2} are arbitrary constants. The general solution of system (2.3) is of the form

$$
\begin{equation*}
\chi=\frac{1}{2} e^{-i v t}\left(C_{1} e^{i \theta}+C_{2} e^{-i \theta}\right), \quad \mu=\frac{1}{2} e^{-i v t}\left(C_{1} e^{i \theta}-C_{2} e^{-i \theta}\right) \tag{2.6}
\end{equation*}
$$

3. It follows from the solution (2.6) that the integral matrix of the system (2.3) has the structure

$$
P=e^{-i v t} Z, \quad Z(t)=\frac{1}{2}\left\|\begin{array}{cc}
e^{i \theta} & e^{-i \theta} \tag{3.1}
\end{array}\right\| \quad \text { e Liapunov type matrix }
$$

It follows, therefore, that on the basis of a theorem due to Erugin [2], the system (2.3) is reducible for any form of the function $\Omega(t)$. The substitution

$$
Y=Z^{-1} X, \quad Y(t)=\left\|\begin{array}{l}
y_{1} \tag{3.2}\\
y_{2}
\end{array}\right\|, \quad Z^{-1}(t)=\left\|\begin{array}{cc}
e^{-i \theta} & e^{-i \theta} \\
e^{i \theta} & -e^{i \theta}
\end{array}\right\|, \quad X(t)=\left\|\begin{array}{l}
X \\
\mu
\end{array}\right\|
$$

transforms the system (2.3) into the system with constant coefficients

$$
\begin{equation*}
\frac{d y_{1}}{d t}+i v y_{1}=0, \quad \frac{d y_{2}}{d t}+i v y_{2}=0 \tag{3.3}
\end{equation*}
$$

Inverse transformation from the variables y_{1}, y_{2} to the variables X. μ according to (3.2) is of the form

$$
\begin{equation*}
X=Z Y \tag{3.4}
\end{equation*}
$$

Letting

$$
\begin{equation*}
y_{1}=\eta_{1}+i \eta_{2}, \quad y_{2}=\eta_{3}+i \eta_{k} \tag{3.5}
\end{equation*}
$$

We have on the basis of (3.3) the Schuler-Geckeler system for the variables η_{j}

$$
\begin{equation*}
\frac{d \eta_{1}}{d t}-v \eta_{2}=0, \quad \frac{d \eta_{3}}{d t}+v \eta_{1}=0, \quad \frac{d \eta_{s}}{d t}-v \eta_{4}=0, \quad \frac{d \eta_{4}}{d t}+v \eta_{s}=0 \tag{3.6}
\end{equation*}
$$

From (3.2) and considering (2.2) and (3.5), We obtain the formulas for a non-singular transformation from the variables x_{j} to the variables η_{j} of the form

$$
\begin{align*}
& \eta_{1}=\frac{U \cos \varphi}{v} x_{1} \cos \theta+x_{2} \sin \theta+x_{3} \cos \theta-\frac{2 B \sin \varphi v}{P l} x_{4} \sin \theta \\
& \eta_{2}=-\frac{U \cos \varphi}{v} x_{1} \sin \theta+x_{8} \cos \theta-x_{3} \sin \theta-\frac{2 B \sin \varphi v}{P l} x_{4} \cos \theta \tag{3.7}\\
& \eta_{8}=\frac{U \cos \varphi}{v} x_{1} \cos \theta-x_{2} \sin \theta-x_{8} \cos \theta-\frac{2 B \sin \varphi v}{P l} x_{4} \sin \theta \\
& \eta_{4}=\frac{U \cos \varphi}{v} x_{1} \sin \theta+x_{2} \cos \theta-x_{3} \sin \theta+\frac{2 B \sin \varphi v}{P l} x_{4} \cos \theta
\end{align*}
$$

The formulas for inverse transformation from the variables η_{j} to the variables x_{j} are

$$
\begin{align*}
& x_{1}=\frac{1}{2} \frac{v}{U \cos \varphi}\left(\eta_{1} \cos \theta-\eta_{3} \sin \theta+\eta_{3} \cos \theta+\eta_{4} \sin \theta\right) \\
& x_{2}=\frac{1}{2}\left(\eta_{1} \sin \theta+\eta_{1} \cos \theta-\eta_{3} \sin \theta+\eta_{4} \cos \theta\right) \tag{3.8}\\
& x_{8}=\frac{1}{2}\left(\eta_{1} \cos \theta-\eta_{2} \sin \theta-\eta_{3} \cos \theta-\eta_{4} \sin \theta\right) \\
& x_{4}=\frac{1}{2} \frac{P l}{v 2 B \sin \varphi}\left(-\eta_{1} \sin \theta-\eta_{2} \cos \theta-\eta_{3} \sin \theta+\eta_{4} \cos \theta\right)
\end{align*}
$$

4. The preceding theory is applicable virtually without anj alteration to the equations of a two-gyroscope vertical as well, given in [3]:

$$
\begin{align*}
& m a v \frac{d \alpha}{d t}+m a \frac{d v}{d t} \alpha-m g a \beta+\Omega 2 B \cos \theta^{*} \delta=0 \quad \frac{d \beta}{d t}+\frac{v}{R} \alpha-\Omega \gamma=0 \\
& \frac{d \gamma}{d t}-\frac{2 B \cos \theta^{*}}{m a R} \delta+\Omega \beta=0, \quad \frac{d}{d t}\left(2 B \cos \theta^{*} \delta\right)+m g a \gamma-m a v \Omega \alpha=0 \tag{4.1}
\end{align*}
$$

Function $\theta^{*}(t)$ satisfies the condition

$$
\theta^{*}(t)=\sin ^{-1} \frac{m a v}{2 B}
$$

The remaining notation in system (4.1) is the same as in (1.1), with a having the same meaning as l. Let us introduce new variables z_{j} by formulas

$$
\begin{equation*}
\alpha=\frac{R U \cos \varphi}{v} z_{1}, \quad \beta=z_{3}, \quad \gamma=z_{3}, \quad \delta=\frac{\cos \varphi}{\cos \theta^{*}} z_{4} \tag{4.2}
\end{equation*}
$$

The system (4.1) will become

$$
\begin{array}{lll}
\frac{d z_{1}}{d t}-\frac{v^{2}}{U \cos \varphi} z_{8}+\lambda_{2} \Omega z_{4}=0, & \frac{d z_{3}}{d t}-\frac{2 B \cos \varphi v^{2}}{P a} z_{4}+\Omega z_{2}=0 & \left(\lambda_{2}=\frac{2 B v^{2}}{P a U}\right) \tag{4.3}\\
\frac{d z_{2}}{d t}+U \cos \varphi z_{1}-\Omega z_{3}=0, \quad \frac{d z_{4}}{d t}+\frac{P a}{2 B \cos \phi} z_{3}-\frac{1}{\lambda_{0}} \Omega z_{1}=0 &
\end{array}
$$

Fith analogous reasoning as above, one can show that by means of the non-singular substitution

$$
\begin{align*}
& \zeta_{1}=\frac{U \cos \varphi}{v} z_{1} \cos \theta+z_{2} \sin \theta+z_{3} \cos \theta+\frac{2 B \cos \varphi v}{P a} z_{4} \sin \theta \\
& \zeta_{4}=-\frac{U \cos \varphi}{v} z_{1} \sin \theta+z_{2} \cos \theta-z_{3} \sin \theta+\frac{2 B \cos \varphi v}{P a} z_{4} \cos \theta \tag{4.4}\\
& \zeta_{3}=\frac{U \cos \varphi}{v} z_{1} \cos \theta-z_{2} \sin \theta-z_{3} \cos \theta+\frac{2 B \cos \varphi v}{P a} z_{4} \sin \theta \\
& \zeta_{4}=\frac{U \cos \varphi}{v} z_{1} \sin \theta+z_{2} \cos \theta-z_{5} \sin \theta-\frac{2 B \cos \varphi v}{P a} z_{4} \cos \theta
\end{align*}
$$

the system (4.3) is reducible for any form of the function $\Omega(t)$ to the Schuler-Geckeler system

$$
\begin{equation*}
\frac{d \zeta_{1}}{d t}-v \zeta_{2}=0, \quad \frac{d \zeta_{2}}{d t}+v \zeta_{1}=0, \quad \frac{d \zeta_{3}}{d t}-v \zeta_{4}=0, \quad \frac{d \zeta_{4}}{d t}+v \zeta_{3}=0 \tag{4.5}
\end{equation*}
$$

The formulas for inverse transformation from the variables ζ_{j} to the variables z_{j} are

$$
\begin{align*}
& z_{1}=\frac{1}{2} \frac{v}{U \cos \varphi}\left(\zeta_{1} \cos \theta-\zeta_{2} \sin \theta+\zeta_{3} \cos \theta+\zeta_{4} \sin \theta\right) \\
& z_{2}=\frac{1}{2}\left(\zeta_{1} \sin \theta+\zeta_{2} \cos \theta-\zeta_{2} \sin \theta+\zeta_{4} \cos \theta\right) \\
& z_{3}=\frac{1}{2}\left(\zeta_{1} \cos \theta-\zeta_{2} \sin \theta-\zeta_{3} \cos \theta-\zeta_{4} \sin \theta\right) \tag{4.6}\\
& z_{4}=\frac{1}{2} \frac{P_{a}}{v 2 B \cos \varphi}\left(\zeta_{1} \sin \theta+\zeta_{3} \cos \theta+\zeta_{3} \sin \theta-\zeta_{4} \cos \theta\right)
\end{align*}
$$

BIBLIOGRAPHY

1. Koshliakov, V.N., 0 privodimosti uravnenii dvizhenila girogorizontkompasa (on the reduction of the equations of motion of a gyrohorizoncompass). PMM Vo1. 25, No. 5, 1961.
2. Erugin, N. P., Privodimye sistemy (Reducible Systems). Izd-vo Akad. Nauk SSSR, 1946.
3. Ishlinskii. A.Iu., Teoria dvukhgiroskopicheskoi vertikali (Theory of a two-gyroscope vertical). PMM Vol. 21, No. 2, 1957.
4. Ishlinskii, A.Iu., K teorii girogorizontkompasa (On the theory of the gyrohorizoncompass). PMM Vo1. 20, No. 4, 1956.
